

UK Industrial Strategy – Faraday Battery Challenge

Bridging the Gap from R&D to Mass Production

UKBIC scope

Volume, TRL, MRL Giga Scale

Tonne Scale

Characteristic

 Typically university scale research labs using small quantities of hand-made materials.

Gramme Scale

- Used for fundamental materials research and initial half-cell experiments at coin cell scale.
- Typically corporate R&D pilot line or university / Catapult centre.

Kilogramme Scale

- Used to demonstrate scalability of materials to full size cell, and to develop electrode mixtures, deposition processes and cell formats.
- Typically full-scale manufacturing facilities used at low output rate.
- Used to develop and validate materials, cell design, manufacturing processes and parameters at industry rates prior to full plant investment.

Industrial Engineering

- Full-scale, high volume manufacturing plant. Typically 6-50GWh/year.
- Used to deliver very large volumes of cells with no variation or flexibility to chemistry, format or quality. Cost/kWh and process consistency are critical.

Commercialisation

Technology Readiness	TRL 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9
	Principles & Research	Explore Applications	Analytical Experiments	Validation & Requirements	Design & Performance	Model & Prototype	Performance & Testing	Test & Demonstrate	Real World & Launch

Research & Development

Manufacturing Readiness

Research & Severophient				maderial Engineering				Commercialisation		
MRL 1	MRL 2	MRL 3	MRL 4	MRL 5	MRL 6	MRL 7	MRL 8	MRL 9	MRL 10	
Implication & Materials	Identify Processes	Proof of Concept	Ide <mark>ntify</mark> Techno <mark>logy &</mark> Test	Prototype Materials, Tools & Skills	Processes & Detailed Costs	Pilot Line & Materials	Process Maturity Demonstration	Manufacturing Processes Proven	Production Ready	
Material Solution Analysis				Technology Development		Engineering & Manufacturing Development		Production & Deployment	Operation & Support	

Key Facts

UKBIC Building

UKBIC Electrode Manufacturing

UKBIC Cylindrical Cell (21700) Assembly

UKBIC Equipment - Module and Pack Assembly Line

Thank You

www.ukbic.co.uk

Email: <u>info@ukbic.co.uk</u>

LinkedIn: www.linkedin.com/company/ukbic

Follow us on Twitter: www.twitter.com/uk bic

Automotive Transformation

Build your business in the UK

Julian Hetherington

Director, Automotive Transformation

The current situation...

Today, transport offers the most significant opportunity to reduce UK emissions

transport as a whole accounts for 28% of UK GHG emissions

almost double the amount produced by UK homes

2034

The vehicle development cycle in the next 10 years will affect our emissions output for a nearly a quarter of a century

UK demand is coming fast

Even with modest growth, we expect that the UK will need 4+ Gigafactories by 2030

¹ EVs include BEV, PHEV, HEV 2 IHS data adjusted for short-term fluctuations 3 ICE vehicles include exported cars (mainly to RoW), domestic and exported trucks and buses 4 One average gigafactory has ~15 GWh p.a. capacity SOURCE: IHS; McKinsey Energy Insights

Passenger car report

Area of focus

UK opportunity for electrification of passenger cars

Report timeframe

5 years

Value of opportunity

£24bn

£24 billion represents the serviceable available market across 12 opportunities considering geographic access for UK-based manufacturers

Split into three key technology areas

£12bn Batteries

Cathode materials refining
Cathode manufacturing
Anode manufacturing
Electrolyte manufacturing
Cell assembly
Battery pack components

£10bn

Power electronics

Semiconductors

Sensors

High-performance passive components

Automotive is a strategically important industry in the UK

People

59,000+

Engineering and manufacturing apprentices

823,000+

People employed in the UK automotive industry

UK exports

1.2m

Vehicles made in the UK

80%

Of cars made in the UK are exported

160

Export destination countries

Manufacturers

£3.75 billion

Spent annually on research and development

8 Major premium and sports car manufacturers

6 Mainstream car manufacturers

4 Commerical vehicle manufacturers

8 Bus and coach manufacturers

60+ Specialist vehicle manufacturers

9 Engine manufacturers

Automotive Transformation Fund

Launched in July 2020

- Secure the transformation to electrification of the UK automotive sector at pace
- Capital investment support for factory equipment, land, buildings and set-up costs
- Support for economic & technical compatibility feasibility studies leading to industrial investment
- Complements ongoing R&D project support programmes through regular APC competitions

Supporting industrialisation and scale-up of:

Batteries

Motors & Drives

Power Electronics

Fuel Cells

Supply Chain

ATF Projects to date

30+

Feasibility Studies

Assess technical or economic viability including:

- · Battery materials and upstream raw materials refining
- Battery manufacturing at scale
- · Semiconductors for inverters
- Motors
- Fuel cells
- Alternative sources and refining of Nickel, Cobalt and Manganese
- OEM study into adopting large-format cells

20+

Expressions of Interest

Potential UK investment projects of scale, ranging from £20m to over £2bn including:

- Battery manufacturing
- Anode manufacturing and graphitisation
- Active Cathode Materials (CAM)
- Electrolyte
- Separators & HPA for specialist coatings
- · Lithium concentrates and precursor battery materials
- Copper materials for batteries
- Fuel cells and coated membranes
- eAxle and motors
- Specialist castings for inverter and motor enclosures
- Wide band-gap semiconductors

