

 $oldsymbol{eta}$

Produced by the Advanced Propulsion Centre UK on behalf of the Automotive Council UK Information correct at time of publication

The 2024 technology roadmaps provide a view of technology adoption in the automotive industry. These roadmaps help academia, industry and policy-makers understand where research and development (R&D) efforts are likely to be focussed, highlight key milestones in technology adoption, and through the supporting documents explore challenges and opportunities.

The documents available for each roadmap are as follows:

The executive roadmap

The executive roadmap provides a high-level view of forecast mass adoption of technology within the automotive industry. Mass adoption requires technology, supply-chain, manufacturing and market readiness and in some instances, regulatory readiness.

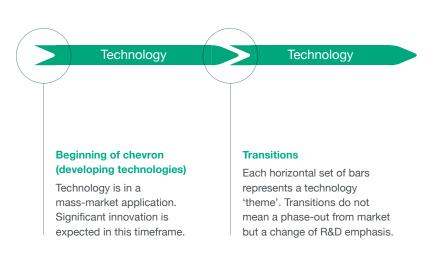
The narrative report

The narrative report supports the executive roadmap by providing the context behind the technologies on the roadmap. The narrative considers regulatory and market drivers alongside the work required to develop individual technologies and their supply chain.

The innovation opportunities report

The innovation opportunities report is intended to take a deeper dive in to the R&D steps required to enable technologies on the roadmap.

Technology roadmap



Narrative report

This technology roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass-market adoption.

- Chevrons with text describing a technology indicate when a technology is expected to reach mass-market adoption in the automotive industry.
- Technology adoption will vary from region to region, this is recognised and discussed in the narrative report that accompanies this executive roadmap.
- Technology adoption varies within different sectors of the automotive industry and, where appropriate, this is indicated on the roadmap and discussed in the accompanying narrative report.
- Some technologies may be feasible before appearing on the roadmap, many technologies that do not appear until later are technically feasible now. However, the roadmap considers not just technology maturity but also market, supply chain and regulatory impacts. These are discussed in the accompanying narrative report.
- Some chevrons appear to start on the 2025 line, this is considered as equivalent to a technology being available now.

		2025	2035	2040	
Mass-volume technology	Volumetric power density (kW/l)	25	35	40	
	Gravimetric power density (kW/kg)	8	12	16	
	Peak power (kW)*	120-250	>250	>250	HDV
	Continuous power (kW)*	50-150	150	≥150	

		2025	2035	2040
	Volumetric power density (kW/l)	35	50	60
Luxury	Gravimetric power density (kW/kg)	8	14	18
technology	logy Peak power (kW)*	350	500	>500
	Continuous power (kW)*	230	400	>450
		2025	2035	2040
	Volumetric power density (kW/I)	2025 35	2035 50	2040 65
High-	Volumetric power density (kW/I) Gravimetric power density (kW/kg)			
High- performance technology		35	50	65

*potentially delivered by multiple motors

Power density is based on the e-motor only (including active and passive mass of e-motor) Continuous power and torque should be sustainable for at least 15 minutes (for NRMM 260 minutes) Power is Net Power, as defined in ECE R85 **NRMM with lower power requirements such as forklifts

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

		2025	2035	2040
	Volumetric power density (kW/I)	6	10	14
	Gravimetric power density (kW/kg)	4	6	8
HDV	Peak power (kW)*	250-500	300-500	400-500+
ΠUV	Continuous power (kW)*	150-350	180-350	250-350+
	Continuous torque (Nm)	480-800	800-1200	1000-1200+
	Peak torque (Nm)	800-1500	1500-2000	2000+

		2025	2035	2040
	Volumetric power density (kW/l)	6	10	14
	Gravimetric power density (kW/kg)	4	6	8
Off-highway	Peak power (kW)*	<100	<150	<150
(including NRMM)**	Continuous power (kW)*	<55	<75	<75
	Continuous torque (Nm)	480-800	800-1200	1000-1200+
	Peak torque (Nm)	800-1500	1500-2000	2000+

:	2025	2030	2035	2040
 Machine architectures Technologies Integration 	Click to expand (page 6)			
 Thermal management Materials Design 	Click to expand (page 7)			
 Material development Windings Hard magnetics Soft magnetics Other 	Click to expand (page 8)			
 Manufacturing and processing Housing Windings Stator / rotor Other 	Click to expand (page 9)			
 Noise, vibration and harshness (NVH) 	Click to expand (page 10)			
Software and drive controls	Click to expand (page 11)			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 12)			
:	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

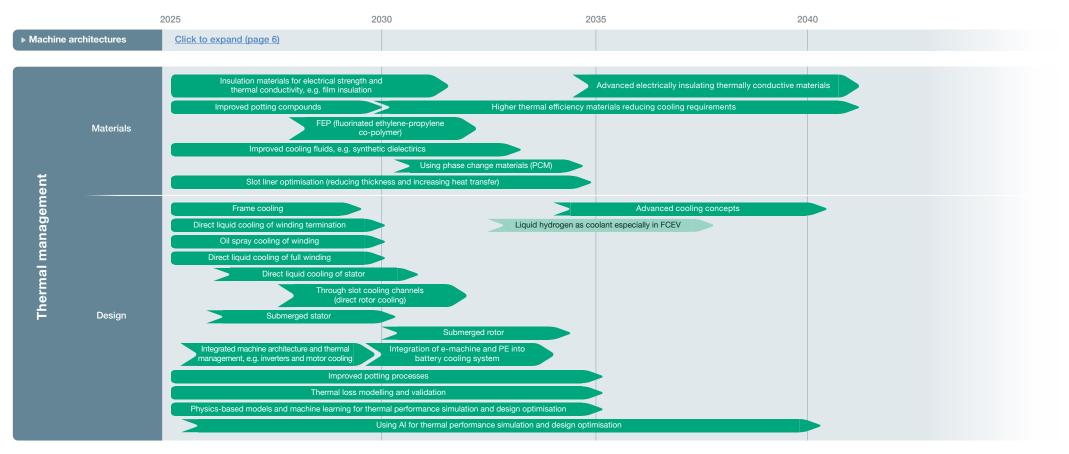
Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

automotive council

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.


Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

Material development	Click to expand (page 8)				
Manufacturing and processi	ng Click to expand (page 9)				
Noise, vibration and harshness (N)	(H) <u>Click to expand (page 10)</u>				
Software and drive controls	Click to expand (page 11)				
▶ Life cycle	Click to expand (page 12)				
Compress all	2025	2030	2035	2040	

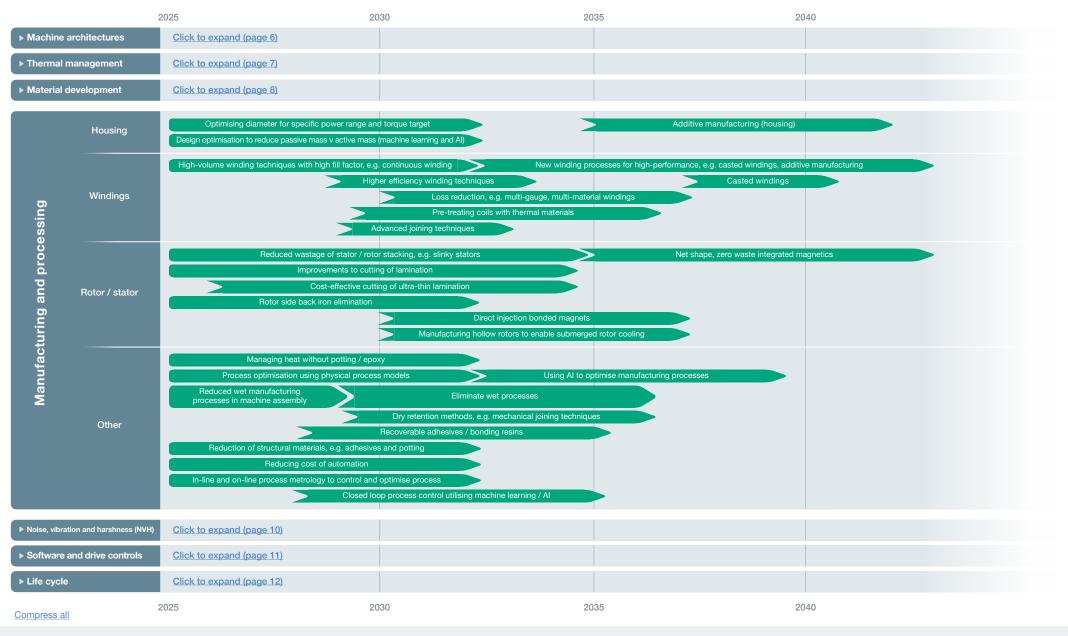
Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

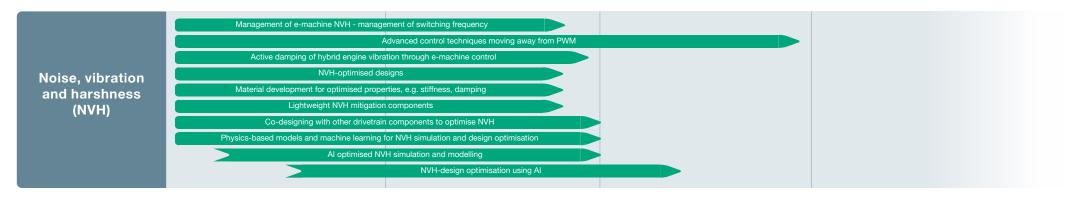

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

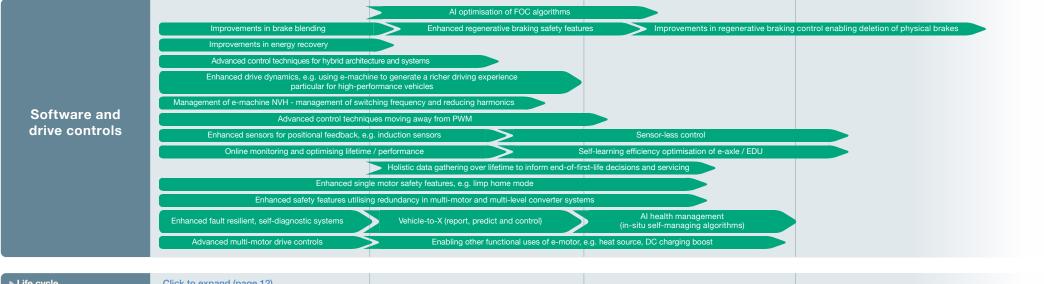

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

	2025	2030	2035	2040
▶ Machine architectures	Click to expand (page 6)			
▶ Thermal management	Click to expand (page 7)			
Material development	Click to expand (page 8)			
Manufacturing and processing	Click to expand (page 9)			

Software and drive controls	Click to expand (page 11)			
▶ Life cycle	Click to expand (page 12)			
Compress all	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

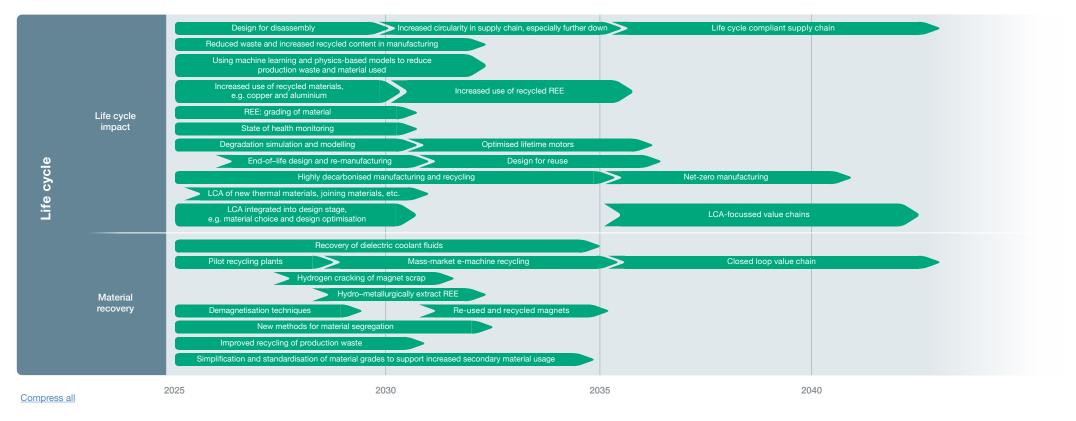

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

	2025	2030	2035	2040
Machine architectures	Click to expand (page 6)			
▶ Thermal management	Click to expand (page 7)			
Material development	Click to expand (page 8)			
Manufacturing and processing	g Click to expand (page 9)			
▶ Noise, vibration and harshness (NVH	Click to expand (page 10)			

▶ Life cycle	Click to expand (page 12)			
Compress all	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.


Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

	2025	2030	2035	2040	
Machine architectures	Click to expand (page 6)				
Thermal management	Click to expand (page 7)				
Material development	Click to expand (page 8)				
Manufacturing and processing	Click to expand (page 9)				
Noise, vibration and harshness (NVH)	Click to expand (page 10)				
▶ Software and drive controls	Click to expand (page 11)				

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Glossary

APC	Advanced Propulsion Centre UK	LLM	Large language models
AI	Artificial intelligence	LCA	Life cycle analysis
BEV	Battery electric vehicle	LDV	Light-duty vehicle
BMS	Battery management system	ML	Machine learning
CO2	Carbon dioxide	MPC	Model predictive control
CO ₂ -eq	Carbon dioxide equivalent greenhouse gas effect	NEV	New energy vehicle
EDU	Electric drive unit	NdFeB	Neodymium iron boron
EESM	Electrically excited synchronous motors	NRMM	Non-road mobile machinery
EV	Electric vehicle	NVH	Noise, vibration and harshness
EU	European Union	OEM	Original equipment manufacturer
FOC	Field oriented control	R&D	Research and Development
FEP	Fluorinated ethylene propylene	REE	Rare earth elements
FCEV	Fuel cell electric vehicle	SMC	Soft magnetic composites
HDV	Heavy-duty vehicle	SmCo	Samarium-cobalt
HTS	High-temperature superconductors	xEV	Electromotive vehicle
ICE	Internal combustion engine	ZEV	Zero emissions vehicle
loT	Internet of things		

Find all the roadmaps at

www.apcuk.co.uk/technology-roadmaps

Established in 2013, the Advanced Propulsion Centre UK (APC), with the backing of the UK Government's Department for Business and Trade (DBT), has facilitated funding for 304 low-carbon and zero-emission projects involving 538 partners. Working with companies of all sizes, this funding is estimated to have helped to create or safeguard over 59,000 jobs in the UK. The technologies and products that result from these projects are projected to save over 425 million tonnes of CO₂.

The APC would like to acknowledge the extensive support provided by industry and academia in developing and publishing the roadmaps.

