Electric Energy Storage

Technology Roadmap 2024

Produced by the Advanced Propulsion Centre UK on behalf of the Automotive Council UK Information correct at time of publication

The 2024 technology roadmaps provide a view of technology adoption in the automotive industry. These roadmaps help academia, industry and policy-makers understand where research and development (R&D) efforts are likely to be focussed, highlight key milestones in technology adoption, and through the supporting documents explore challenges and opportunities.

The documents available for each roadmap are as follows:

The executive roadmap

The executive roadmap provides a high-level view of forecast mass adoption of technology within the automotive industry. Mass adoption requires technology, supply-chain, manufacturing and market readiness and in some instances, regulatory readiness.

The narrative report

The narrative report supports the executive roadmap by providing the context behind the technologies on the roadmap. The narrative considers regulatory and market drivers alongside the work required to develop individual technologies and their supply chain.

The innovation opportunities report

The innovation opportunities report is intended to take a deeper dive in to the R&D steps required to enable technologies on the roadmap.

Technology roadmap

Narrative report

This technology roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass-market adoption.

- Chevrons with text describing a technology indicate when a technology is expected to reach mass-market adoption in the automotive industry.
- Technology adoption will vary from region to region, this is recognised and discussed in the narrative report that accompanies this executive roadmap.
- Technology adoption varies within different sectors of the automotive industry and, where appropriate, this is indicated on the roadmap and discussed in the accompanying narrative report.
- Some technologies may be feasible before appearing on the roadmap, many technologies that do not appear until later are technically feasible now. However, the roadmap considers not just technology maturity but also market, supply chain and regulatory impacts. These are discussed in the accompanying narrative report.
- Some chevrons appear to start on the 2025 line, this is considered as equivalent to a technology being available now.

Technology indicators for energy-focused, cost-sensitive applications

Technology indicators that industry is likely to achieve in a mass-market competitive environment.

		NIB		LF(M)P			NMC(A)			
		2025	2030	2040	2025	2030	2040	2025	2030	2040
Cell materials roadmap balanced indicators	Cell (Wh/kg)	120-160	140-180	150-200	100-160	150-250	150-250	200-300	250-350	300-500
	Cell (Wh/I)	200-300	200-350	300-400	300-400	300-550	400-650	500-750	600-950	800-1300

		NIB		LF(M)P			NMC(A)			
		2025	2030	2040	2025	2030	2040	2025	2030	2040
Modules and pack roadmap balanced indicators	Charge acceptance continuous C-rate (C)	2.5	3.5	3.5	2.5	3.5	>4	2.5	3.5	>4
	Pack (Wh/kg)	80-150	90-160	100-180	60-140	90-200	100-220	120-200	160-300	200-420
	Pack (Wh/I)	80-200	80-250	120-300	120-260	120-360	160-450	200-500	250-600	350-850

NIB

Sodium-ion batteries use sodium-ions as the charge carrier, there are a wide variety of chemistry options available for the cathode which is primarily responsible for the performance characteristics of the battery. In general, sodium-ion batteries are safer and can endure more charge cycles than their lithium-ion counterparts.

LF(M)P

LF(M)P or sometimes written L(M) FP is made with the addition of manganese to a lithium iron phosphate cathode. The manganese improves energy density.

NMC(A)

Despite the lack of an 'L' in the name, NMC is a lithium-ion battery cathode chemistry comprising lithium, nickel, manganese and cobalt. This chemistry has energy density advantages over LF(M)P but has drawbacks in safety, cycle life and cost. Where energy is the most critical parameter, high nickel versions of NMC are used. There are other high-nickel cathode chemistries such as NMCA. NMCA comprises lithium, nickel, manganese, cobalt and aluminium.

2035-2040 forecast battery pack performance

Energy density (Wh/I)

LTO and NIB may have lower energy density than other cathode chemistries but they offer high cycle life and high c-rates. This makes them highly suitable for applications that require rapid power delivery and longer lifetimes, for example off-highway / NRMM and stationary storage.

ADVANCED PROPULSION CENTRE UK

2035 Automotive industry 'ideal' requirements

Energy density (Wh/I)

Electrochemistry roadmap

ADVANCED PROPULSION CENTRE UK

2035-2040 pack level performance compared to 'idealised' requirements

Energy density (Wh/I)

	2025	2030	2035	2040
 Electrodes Anodes Cathodes 	Click to expand (page 10)			
 Other active materials Electrolyte materials Separators Current collectors 	Click to expand (page 11)			
 Solvents, binders and additives 	Click to expand (page 12)			
Manufacturing and processing	Click to expand (page 13)			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 14)			
	2025	2030	2035	2040

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

9

► Other active materials	Click to expand (page 11)			
 Solvents, binders and additives 	Click to expand (page 12)			
Manufacturing and processing	Click to expand (page 13)			
▶ Life cycle	Click to expand (page 14)			
Compress all	2025	2030	2035	2040

▶ Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

 Solvents, binders and additives 	Click to expand (page 12)			
 Manufacturing and processing 	Click to expand (page 13)			
▶ Life cycle	Click to expand (page 14)			
Comprose all	2025	2030	2035	2040

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

	2025	2030	2035	2040
▶ Cell format and design	Click to expand (page 16)			
 Module and pack innovations Electrical distribution system Thermal Mechanical Pack integration and manufacturing 	<u>Click to expand (page 17) (and page 18)</u>			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 19)			
	2025	2030	2035	2040

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

16

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Glossary

ADAS	Advanced driver-assistance system	NEV	New energy vehicle
AI	Artificial intelligence	NIB	Sodium-ion batteries
BEV	Battery electric vehicles	NMC	Nickel manganese cobalt
BMS	Battery management system	NMC(A)	Lithium nickel manganese cobalt aluminum
CO ₂ -eq	Carbon dioxide equivalent greenhouse gas effect	NMP	N-methyl-2-pyrrolidone
CO ₂	Carbon dioxide	OEM	Original equipment manufacturer
EDS	Electrical distribution system	PE	Polyethylene
EU	European Union	PHEVs	Plug-in hybrid electric vehicle
EV	Electric vehicle	PP	Polypropylene
FAT	Factory acceptance test	PVDF	Polyvinylidene fluoride / polyvinylidene difluoride
FCEV	Fuel cell electric vehicle	R&D	Research and Development
HDV	Heavy-duty vehicle	Si	Silicon
HGV	Heavy goods vehicle	SOC	State-of-charge
LCA	Life cycle analysis	SOH	State-of-health
LCV	Light commercial vehicle	TEN-T	Trans-European Transport Network
LDV	Light-duty vehicle	UK	United Kingdom
LEVI	Local electric vehicle infrastructure	V2G	Vehicle-to-grid
LFMP	Lithium manganese iron phosphate	V2H	Vehicle-to-home
LFxP	Lithium iron phosphate	V2L	Vehicle-to-load
Li-S	Lithium sulfur	V2X	Vehicle-to-everything
LMNO	Lithium manganese nickel oxide	xEV	Electrified powertrain vehicle including hybrids
ML	Machine learning	ZEV	Zero-emissions vehicle
NCA	Lithium nickel cobalt aluminum oxide		

Find all the roadmaps at

www.apcuk.co.uk/technology-roadmaps

Established in 2013, the Advanced Propulsion Centre UK (APC), with the backing of the UK Government's Department for Business and Trade (DBT), has facilitated funding for 304 low-carbon and zero-emission projects involving 538 partners. Working with companies of all sizes, this funding is estimated to have helped to create or safeguard over 59,000 jobs in the UK. The technologies and products that result from these projects are projected to save over 425 million tonnes of CO₂.

The APC would like to acknowledge the extensive support provided by industry and academia in developing and publishing the roadmaps.

