Internal Combustion Engines

Technology Roadmap 2024

Produced by the Advanced Propulsion Centre UK on behalf of the Automotive Council UK Information correct at time of publication

The 2024 technology roadmaps provide a view of technology adoption in the automotive industry. These roadmaps help academia, industry and policy-makers understand where research and development (R&D) efforts are likely to be focussed, highlight key milestones in technology adoption, and through the supporting documents explore challenges and opportunities.

The documents available for each roadmap are as follows:

The executive roadmap

The executive roadmap provides a high-level view of forecast mass adoption of technology within the automotive industry. Mass adoption requires technology, supply-chain, manufacturing and market readiness and in some instances, regulatory readiness.

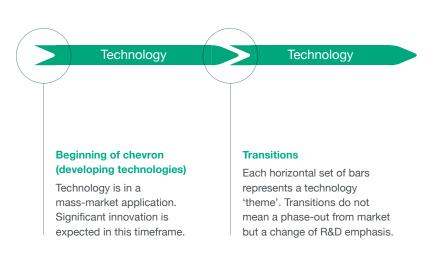
The narrative report

The narrative report supports the executive roadmap by providing the context behind the technologies on the roadmap. The narrative considers regulatory and market drivers alongside the work required to develop individual technologies and their supply chain.

The innovation opportunities report

The innovation opportunities report is intended to take a deeper dive in to the R&D steps required to enable technologies on the roadmap.

Technology roadmap



Narrative report

This technology roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass-market adoption.

- Chevrons with text describing a technology indicate when a technology is expected to reach mass-market adoption in the automotive industry.
- Technology adoption will vary from region to region, this is recognised and discussed in the narrative report that accompanies this executive roadmap.
- Technology adoption varies within different sectors of the automotive industry and, where appropriate, this is indicated on the roadmap and discussed in the accompanying narrative report.
- Some technologies may be feasible before appearing on the roadmap, many technologies that do not appear until later are technically feasible now. However, the roadmap considers not just technology maturity but also market, supply chain and regulatory impacts. These are discussed in the accompanying narrative report.
- Some chevrons appear to start on the 2025 line, this is considered as equivalent to a technology being available now.

	2025	2030	2035	2040
► Thermal efficiency	Click to expand (page 5)			
Technology pathways	Click to expand (page 6)			
 Systems integration Fuel and emissions controls systems Engine systems and control Drivetrain and hydraulic systems 	Click to expand (page 7)			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 8)			
▶ Sustainable fuels	Click to expand (page 9)			
	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

4

	2025	2030	2035	2040	
	Reduced heat loss	(coatings, thermal management and comb	oustion) Thermal effic	iency focuses for non-fossil fuels, e.g. green hydr	ogen
Thermal	Cylinder deactivation, car	m phasing technologies Advance	d and integrated cooling / friction-reducing tec	chnologies Engines made efficient fo	or non-fossil fuels
efficiency	WHR, e.g. turbo com	ipounding, e-turbo	High-efficiency power units with integr	ated waste heat recovery (WHR), e.g. split cycle	
	Increased th	nermal efficiency for off-highway (includin	g NRMM) applications, tailored to reduce fuel	consumption while increasing performance and d	urability*
Technology pathways	Click to expand (page 6)				
Systems integration	Click to expand (page 7)				
Systems integration					
Life cycle	Click to expand (page 8)				
Sustainable fuels	Click to expand (page 9)				
	2025	2030	2035	2040	
npress all					

* Conforming to off-highway (including NRMM) specific legislations, such as European Commission Stage V non-road emission standards and EPA emissions standards for Nonroad Vehicles and Engines

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

5

	2025	2030	203	35	2040	
► Thermal efficiency	Click to expand (page 5)					
Technology	Right-sized ICE, efficient hybrid ICE		Hybrid ICE	E powertrains with non-fossil fuels, e.g. green	hydrogen*	Car and van
pathways	Right-sized ICE, efficient hybrid ICE	\geq	Sustainable hybrid ICE (primarily H2)*	Hybrid ICE powertrains with n	on-fossil fuels, e.g. green hydrogen*	HDV, specialist vehicles and
						off-highway (including NRMM)
▶ Systems integration	Click to expand (page 7)					
▶ Life cycle	Click to expand (page 8)					
▶ Sustainable fuels	Click to expand (page 9)					
	2025	2030	203	35	2040	

*Hydrogen storage

Hydrogen is expected to become a widely used fuel in internal combustion engines. The hydrogen storage roadmap reflects this change with next generation technologies

projected to become used mass-market applications from 2030 onwards, in-line with the timings on the internal combustion engine roadmap. Such technologies include:

• Type 3, Type 4 and Type 5 gaseous storage alongside cryo-compressed, liquid hydrogen and solid-state storage (see Hydrogen Storage roadmap)

Pressure regulation moving to consistent 700 bar with fuel supply flow rates increasing towards 5 kg / min and beyond (see Hydrogen Storage roadmap)

> Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

	2025	2030	2035	2040
► Thermal efficiency	Click to expand (page 5)			
▶ Technology pathways	Click to expand (page 6)			

		Flexible fuel injection systems, e.g. rate shaping, multiple and high-pressure injection, dual fuels, nozzle geometry and advancing alternative fuels
	Fuel and emissions	Diesel and gasoline after-treatment, including particulate filters, catalysts and cold-start emissions control systems
u	controls systems	Hydrogen injection for H ₂ ICE and new after-treatments for air quality pollutants, cold-start emissions control systems
ratio	Systems	Wide spectrum after-treatment (pre-turbine, low temp, elec. assisted, alt. fuel suited) On-board exhaust gas and fuel reforming
Systems integr	Engine systems and control	Increased efficiency multi-boost devices Controlled air supply for high-efficiency combustion and integrated boost design for H ₂ ICE, e.g. turbochargers Predictive control via V2X and increasing geo-fencing (hybrid ICE) Fully automated powertrain control, AI control and enhanced security
		Improvements in electrical hybrid system development: software, electronics, physical integration and packaging
	Drivetrain	10+ gear automatics replace manual transmission Co-developed heavy-duty focused engines + automatic transmissions, higher efficiency torque converters
	and hydraulic systems	Dedicated hybrid transmissions; integrated, modular and low cost Adaptable and flexible hybrid transmissions
	systems	Improvements in hydraulic system development, including integration to increase overall system efficiency, particularly for quasi-static applications (NRMM)

▶ Life cycle	Click to expand (page 8)			
▶ Sustainable fuels	Click to expand (page 9)			
	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

▶ Transitions do not mean a phase-out from market but a change of R&D emphasis.

	2025	2030	2035	2040
▶ Thermal efficiency	Click to expand (page 5)			
Technology pathways	Click to expand (page 6)			
▶ Systems integration	Click to expand (page 7)			

Life cycle	Life cycle	Designs for disassembly, recycle, repair, reuse and remanufacture Circularity-focused value chain, repurposing existing facilities for net zero ICE
<u>م</u> impact		Highly decarbonised ICE / Dedicated hybrid engine (DHE) manufacture Net zero production systems (CO2-eq)
		Record and track component passport Vehicle lubricants to be recovered at scale for recycling and reuse at end-of-life, ensuring circularity
	Material recovery	Continue existing recovery, recycle, reuse and remanufacturing of all materials at end-of-life of ICE engines
		Adapting older ICE engines to handle non-fossil fuels, such as green hydrogen, e.g. injectors, head and block

► Sustainable fuels	Click to expand (page 9)				
	2025	2030	2035	2040	
Compress all					

Transitions do not mean a phase-out from market but a change of R&D emphasis.

	2025	2030	2035	2040	
▶ Thermal efficiency	Click to expand (page 5)				
► Technology pathways	Click to expand (page 6)				
 Systems integration 	Click to expand (page 7)				
▶ Life cycle	Click to expand (page 8)				

	Drop-in fuels* / lubricants: highe	r blending levels for EN 228, EN 590, EN 15490	from sustainable sources e.g. waste, bio (seco	nd generation +) and HVOs
Sustainable	Drop-in fu	els* / lubricants: synthetic, e-fuels (PTL and PT	G), and co-yields from sustainable aviation fuel	(SAF)
	Non-drop-in fuels*: Bio-	fuels, DME, CNG, LNG, ethanol (including blen	ds, e.g. E20), methanol, synthetic, e-fuels (PTL	and PTG), methane
fuels	Hydrogen non-di	rop-in fuel: for dedicated hybrid ICE mass mark	et** H2 1	uel for specialist apps and truck / bus**
			Future fuels: new zero-carbon fuels	
2025	203	0 20	35 20	40

* Drop-in fuels and non-drop-in fuels

Drop-in fuel solutions are an industry focus for the nearer term, with the aim to decarbonise the current global fleet of over 1.2 billion internal combustion engine passenger cars. These fuels are suitable to be used with current specification engines.

Non-drop-in fuels will be more suitable for niche applications and low-volume markets, and these fuels will be suitable for new specification engines designed today and in the future.

** Hydrogen storage

Hydrogen is expected to become a widely used fuel in internal combustion engines. The hydrogen storage roadmap reflects this change with next generation technologies projected to become used mass-market applications from 2030 onwards, in-line with the timings on the internal combustion engine roadmap. Such technologies include: • Type 3, Type 4 and Type 5 gaseous storage alongside cryo-compressed, liquid hydrogen and solid-state storage (see Hydrogen Storage roadmap)

• Pressure regulation moving to consistent 700 bar with fuel supply flow rates increasing towards 5 kg / min and beyond (see Hydrogen Storage roadmap)

9

Technology indicators for light-duty and heavy-duty applications that industry is likely to achieve in a global mass-market competitive environment

Brake Thermal Efficiency (BTE)

- BTE refers to Peak Brake Thermal Efficiency, a common indicator for engine efficiency. The values listed are best-in-class figures.
- Although single point peak BTE values are shown, these are not accurate indicators of real-world vehicle efficiency, which will vary across propulsion technologies and product applications.
- There may be future developments in non-fossil fuel technologies for low volume and niche market applications.

		2025	2030	2040			2025	2030	2040
	Hydrogen ICE	43%	46-48%	50-52%	Heavy-duty and off-highway (incl. NRMM)	Hydrogen ICE	45%	48-50%	52-55%
Light-duty	Gasoline ICE	46%	48-50%	52-55%		Diesel ICE	49%	51-53%	55-58%
	Non-fossil fuels	46%	48-50%	52-55%	(,	Non-fossil fuels	49%	51-53%	55-58%

Greenhouse Gas and Air Quality Regulation Drivers

Light-duty	CO2-eq Emission	PC 93.6 g//km / Van 153.9 g/km(WLTP)	PC 49.5 g//km / Van 90 g/km(WLTP)	EU fleet-wide CO2: emission targets for cars and vans reaches 0 g/km				
	Pollution and Resource	Euro 7 / EPA Emissio	Euro 7 / EPA Emission standards (light-duty)		Holistic environmental impact legislation (VOC, resource use, land use) and life cycle impact compliance			
Heavy-duty	CO ₂ -eq Emission	CO2: -15%	CO2: -45%	CO2: -65%	CO2: -90%	Towards net zero CO₂:-eq and life	e cycle impact compliance	
	Pollution and Resource	Euro VII / EPA Emission	Euro VII / EPA Emission standards (heavy-duty)		Holistic environmental impact legislation (VOC, resource use, land use) and life cycle impact compliance			
Off-highway				ELI Chara VII / EDA Tiar 5 and beyond baliatic appiremental				
(incl. NRMM)	Emissions legislation	EU Stage V legislation / EPA Tier 4 standards		EU Stage VI / EPA Tier 5 and beyond, holistic environmental impact legislations and life-cycle impact compliance				
Defined driver	Predicted driver	2025 2	030 2	2035 20	40 20	45 2050		

Technology indicators

ADVANCED PROPULSION CENTRE UK

Technology pathways for CO₂-eq reduction in light-duty vehicles

(possible configurations and innovations, may not include all in a vehicle)

Technology indicators

Technology pathways for CO₂-eq reduction in heavy-duty vehicles*

(possible configurations and innovations, may not include all in a vehicle)

Glossary

AFIR	Alternative fuel infrastructure regulation	NEV	New energy vehicle
AI	Artificial intelligence	NFC	Near field communication
BEV	Battery electric vehicle	NOX	Nitrogen oxides
BTE	Brake thermal efficiency	NRMM	Non-road mobile machinery
CAD	Computer aided development	ORC	Organic rankine cycle
CFD	Computational fluid dynamics	PFI	Port fuel injection
CO ₂	Carbon dioxide	PM	Particulate matter
CO ₂ -eq	Carbon dioxide equivalent	R&D	Research and development
CVT	Continuously variable transmission	RFID	Radio frequency identification
DI	Direct injection	RPM	Revolutions per minute
DME	Dimethyl ether	SAF	Sustainable aviation fuel
DPF	Diesel particulate filter	TEN-T	Trans-European Network for Transport
EGR	Exhaust gas recirculation	TWC	Three-way catalysts
EPA	Environmental Protection Agency	UK	United Kingdom
EU	European Union	ULEZ	Ultra-low emission zone
FCEV	Fuel cell electric vehicle	V2X	Vehicle-to-everything
GHG	Greenhouse gases	VVT	Variable valve timing
HDV	Heavy-duty vehicle	WHR	Waste heat recovery
HGV	Heavy goods vehicle	WLTP	World harmonised light-duty vehicles test procedure
ICE	Internal combustion engines	ZEV	Zero emission vehicle

Find all the roadmaps at

www.apcuk.co.uk/technology-roadmaps

Established in 2013, the Advanced Propulsion Centre UK (APC), with the backing of the UK Government's Department for Business and Trade (DBT), has facilitated funding for 304 low-carbon and zero-emission projects involving 538 partners. Working with companies of all sizes, this funding is estimated to have helped to create or safeguard over 59,000 jobs in the UK. The technologies and products that result from these projects are projected to save over 425 million tonnes of CO₂.

The APC would like to acknowledge the extensive support provided by industry and academia in developing and publishing the roadmaps.

