

Lightweight Vehicle and Powertrain Structures

Technology Roadmap 2024

Produced by the Advanced Propulsion Centre UK on behalf of the Automotive Council UK Information correct at time of publication

The 2024 technology roadmaps provide a view of technology adoption in the automotive industry. These roadmaps help academia, industry and policy-makers understand where research and development (R&D) efforts are likely to be focussed, highlight key milestones in technology adoption, and through the supporting documents explore challenges and opportunities.

The documents available for each roadmap are as follows:

The executive roadmap

The executive roadmap provides a high-level view of forecast mass adoption of technology within the automotive industry. Mass adoption requires technology, supply-chain, manufacturing and market readiness and in some instances, regulatory readiness.

The narrative report

The narrative report supports the executive roadmap by providing the context behind the technologies on the roadmap. The narrative considers regulatory and market drivers alongside the work required to develop individual technologies and their supply chain.

The innovation opportunities report

The innovation opportunities report is intended to take a deeper dive in to the R&D steps required to enable technologies on the roadmap.

Technology roadmap

Narrative report

This technology roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass-market adoption.

- Chevrons with text describing a technology indicate when a technology is expected to reach mass-market adoption in the automotive industry.
- Technology adoption will vary from region to region, this is recognised and discussed in the narrative report that accompanies this executive roadmap.
- Technology adoption varies within different sectors of the automotive industry and, where appropriate, this is indicated on the roadmap and discussed in the accompanying narrative report.
- Some technologies may be feasible before appearing on the roadmap, many technologies that do not appear until later are technically feasible now. However, the roadmap considers not just technology maturity but also market, supply chain and regulatory impacts. These are discussed in the accompanying narrative report.
- Some chevrons appear to start on the 2025 line, this is considered as equivalent to a technology being available now.

Opportunities for vehicle mass reduction*

These technology indicators represent opportunities to reduce mass across vehicle sub-systems with the recognition that this is part of managing a weight budget, and that trade-offs are made across the vehicle, depending on the application, performance needs, cost budget, and addition of new features.

Overall vehicle mass may increase to meet performance, cost and life cycle targets.

		2025	2030	2040
	Body (% change)	BASELINE	-15 to 0	-35 to -10
	Chassis (% change)	BASELINE	-10 to 0	-25 to -10
Light-Duty Vehicles	Interior (% change)	BASELINE	-5 to 0	-15 to -5
	ICE powertrain (% change)	BASELINE	-5 to 0	-10 to -5
	BEV powertrain (% change)	BASELINE	-10 to +10	-20 to -10

Notes:

· Represents percentage mass change at equal affordability

- Affordability based on material lifetime cost including end-of-life (EOL)
- Assuming equal performance (crash, NVH, durability, reliability and recyclability)
- Opportunities to reduce mass will vary depending upon vehicle type and design requirements

		2025	2030	2040
	Body (% change)	BASELINE	-10 to 0	-20 to -5
	Chassis (% change)	BASELINE	-5 to 0	-10 to -5
Heavy-Duty Vehicles	Interior (% change)	BASELINE	-5 to 0	-10 to -5
	ICE powertrain (% change)	BASELINE	-3 to 0	-5 to 0
	BEV powertrain (% change)	BASELINE	-5 to +10	-15 to 0

Notes:

- · Represents percentage mass change at equal affordability
- Affordability based on total cost of ownership (TCO)
- Baseline 3-axle lorry (maximum tonnage of 18-26 tonnes)
- · Assuming equal performance (crash, NVH, durability, reliability and recyclability)

Manufacturing emissions targets

Indicators representing CO₂-eq reduction targets for vehicle manufacturing (Scopes 1 and 2), these targets do not include vehicle use or end-of-life.

	2025	2030	2035	2040
Manufacturing emissions targets	BASELINE	> 20% reduction	> 50% reduction	> 90% reduction

* Industry consensus, from application to application there could be significant deviation

** Fuel cell powertrain not included due to relative maturity compared to BEV and ICE powertrains

Technology roadmap

	2025	2030	2035	2040
▶ Design-led	Click to expand (page 6)			
 Material-led Body, chassis, closures and glazing Powertrain Electrical Interior 	Click to expand (page 7)			
Manufacturing and processing	Click to expand (page 8)			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 9)			
	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

▶ Material-led	Click to expand (page 7)			
Manufacturing and processing	Click to expand (page 8)			
▶ Life cycle	Click to expand (page 9)			
:	2025	2030	2035	2040

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications. This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

Manufacturing and processing	Click to expand (page 8)			
▶ Life cycle	Click to expand (page 9)			
Compress all	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

▶ Life cycle	Click to expand (page 9)			
	2025	2030	2035	2040

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications. This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

	2025	2030	2035	2040
▶ Design-led	Click to expand (page 6)			
▶ Material-led	<u>Click to expand (page 7)</u>			
Manufacturing and processing	Click to expand (page 8)			

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications. This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

Glossary

ADAS	Advanced driver-assistance system	(GHG	Greenhouse gas
AFP	Automated fibre placement	1	HDV	Heavy-duty vehicle
AI	Artificial intelligence	1	HP-RTM	High-pressure resin transfer moulding
ALD	Analysis-led design	I	HVAC	Heating, ventilation, and air conditioning
ATL	Automated tape laying	1	ICE	Internal combustion engine
BEV	Battery electric vehicle	1	loT	Internet of things
BIW	Body-in-white	1	LCA	Life cycle analysis / assessment
CBAM	Carbon border adjustment mechanism	1	LDV	Light-duty vehicle
CFD	Computational fluid dynamics	I	MBD	Multi-body dynamics
CFRP	Carbon-fibre reinforced plastic	I	ML	Machine learning
CNC	Computer numerical control	1	NDT	Non-destructive testing
CO_2	Carbon dioxide	1	NRMM	Non-road mobile machinery
CO ₂ -eq	Carbon dioxide equivalent	1	NVH	Noise, vibration, and harshness
DER	Distributed energy resource	(OEM	Original equipment manufacturer
DRI	Direct reduced iron	I	PAN	Polyacrylonitrile
EAF	Electric arc furnace	I	PFA	Polyfurfuryl alcohol
ELV	End-of-life vehicle	I	PVD	Physical vapour deposition
EOL	End-of-life	I	R&D	Research and development
EV	Electric vehicle	I	RTM	Resin transfer moulding
EU	European Union	S	SMC	Sheet moulding compound
FCEV	Fuel cell electric vehicle		T _g	Glass transition temperature
FEA	Finite element analysis		-	

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

Find all the roadmaps at

www.apcuk.co.uk/technology-roadmaps

Established in 2013, the Advanced Propulsion Centre UK (APC), with the backing of the UK Government's Department for Business and Trade (DBT), has facilitated funding for 304 low-carbon and zero-emission projects involving 538 partners. Working with companies of all sizes, this funding is estimated to have helped to create or safeguard over 59,000 jobs in the UK. The technologies and products that result from these projects are projected to save over 425 million tonnes of CO₂.

The APC would like to acknowledge the extensive support provided by industry and academia in developing and publishing the roadmaps.

