

Technology Roadmap 2024

010101010

Produced by the Advanced Propulsion Centre UK on behalf of the Automotive Council UK Information correct at time of publication

The 2024 technology roadmaps provide a view of technology adoption in the automotive industry. These roadmaps help academia, industry and policy-makers understand where research and development (R&D) efforts are likely to be focussed, highlight key milestones in technology adoption, and through the supporting documents explore challenges and opportunities.

The documents available for each roadmap are as follows:

The executive roadmap

The executive roadmap provides a high-level view of forecast mass adoption of technology within the automotive industry. Mass adoption requires technology, supply-chain, manufacturing and market readiness and in some instances, regulatory readiness.

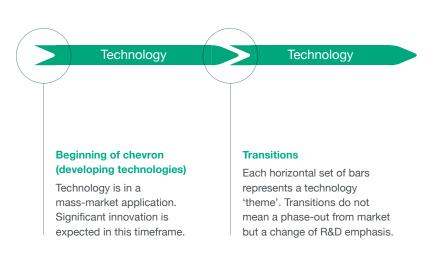
The narrative report

The narrative report supports the executive roadmap by providing the context behind the technologies on the roadmap. The narrative considers regulatory and market drivers alongside the work required to develop individual technologies and their supply chain.

The innovation opportunities report

The innovation opportunities report is intended to take a deeper dive in to the R&D steps required to enable technologies on the roadmap.

Technology roadmap



Narrative report

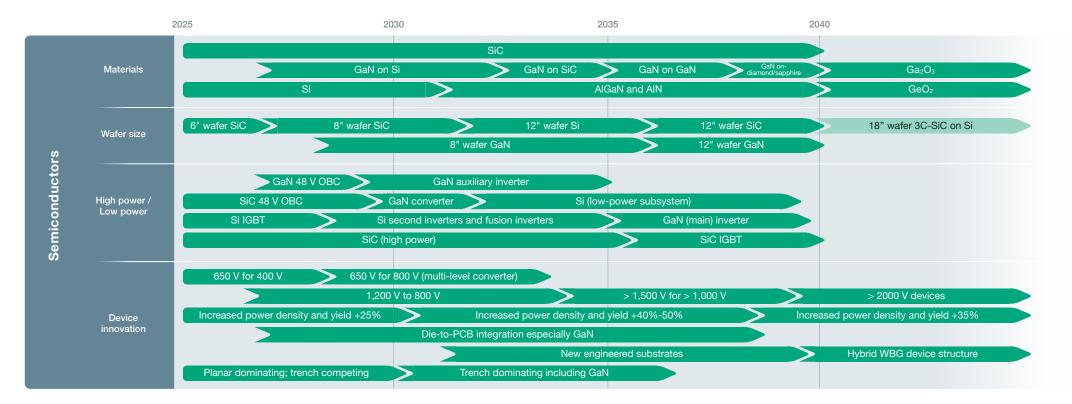
This technology roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass-market adoption.

- Chevrons with text describing a technology indicate when a technology is expected to reach mass-market adoption in the automotive industry.
- Technology adoption will vary from region to region, this is recognised and discussed in the narrative report that accompanies this executive roadmap.
- Technology adoption varies within different sectors of the automotive industry and, where appropriate, this is indicated on the roadmap and discussed in the accompanying narrative report.
- Some technologies may be feasible before appearing on the roadmap, many technologies that do not appear until later are technically feasible now. However, the roadmap considers not just technology maturity but also market, supply chain and regulatory impacts. These are discussed in the accompanying narrative report.
- Some chevrons appear to start on the 2025 line, this is considered as equivalent to a technology being available now.

	2025	2030	2035	2040
 Semiconductors Materials Wafer size High power / Low power Device innovation 	Click to expand (page 5)			
 Components Packaging Actives, passives and PCBs Electro-mechanical 	Click to expand (page 6)			
 Subsystems Design Control Integration 	Click to expand (page 7)			
 Life cycle Life cycle impact Material recovery 	Click to expand (page 8)			
	2025	2030	2035	2040

Technology is in a mass market application. Significant innovation is expected in this timeframe.

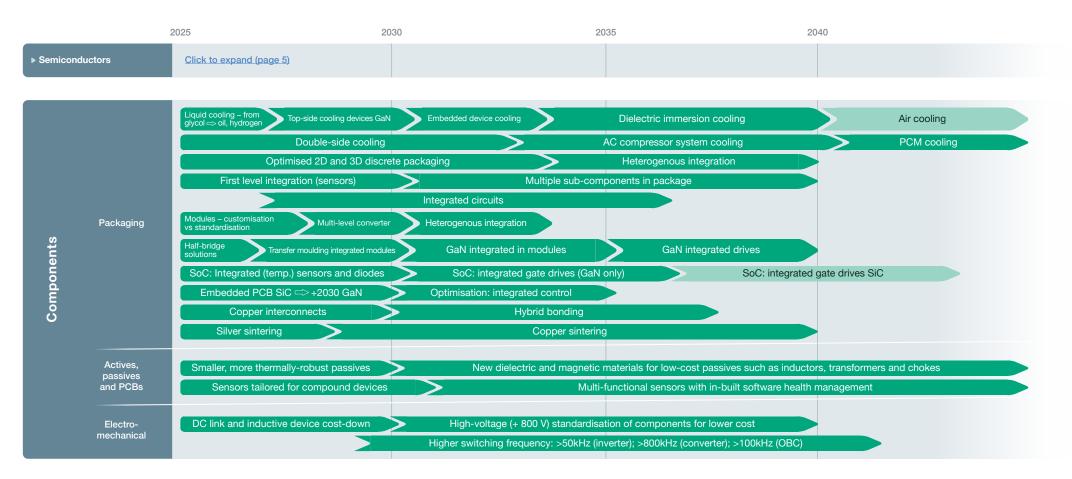
Transitions do not mean a phase-out from market but a change of R&D emphasis.


Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

4

▶ Components	Click to expand (page 6)				
▶ Subsystems	Click to expand (page 7)				
▶ Life cycle	Click to expand (page 8)				
Compress all	2025	2030	2035	2040	


Technology is in a mass market application. Significant innovation is expected in this timeframe.

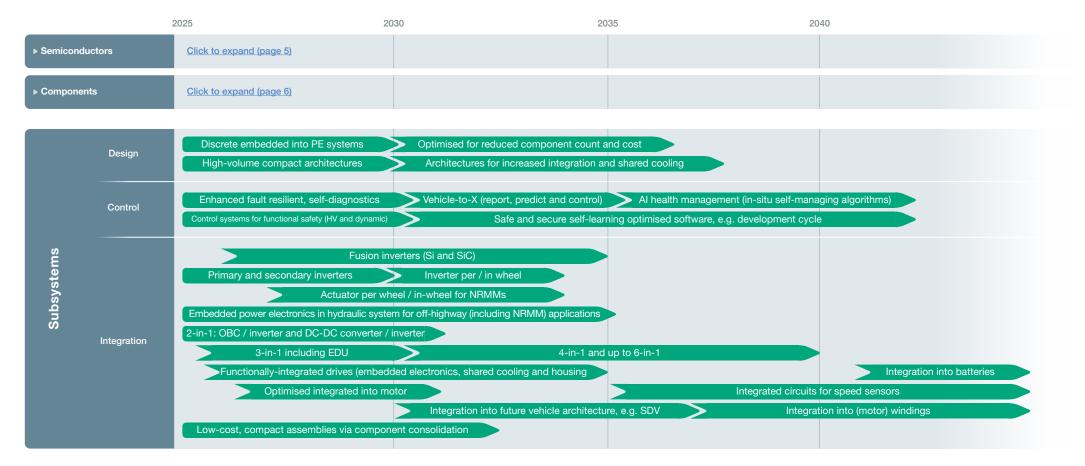
Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

▶ Subsystems	Click to expand (page 7)				
▶ Life cycle	Click to expand (page 8)				
Compress all	2025	2030	2035	2040	

Technology is in a mass market application. Significant innovation is expected in this timeframe.

>> Transitions do not mean a phase-out from market but a change of R&D emphasis.

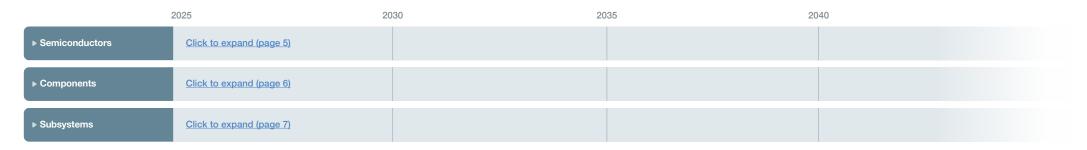

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

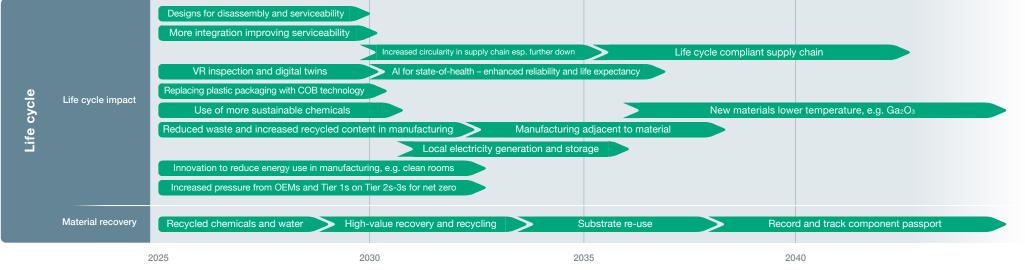
This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

6

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.


>> Transitions do not mean a phase-out from market but a change of R&D emphasis.


Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications. This roadmap represents a snapshot-in-time view of the global automotive industry propulsion technology forecast for mass market adoption. Specific application-tailored technologies will vary from region to region.

7

Compress all

Technology is in a mass market application. Significant innovation is expected in this timeframe.

▶ Transitions do not mean a phase-out from market but a change of R&D emphasis.

Fluid timings: these technologies have less consensus on when they will occur on the timeline, and may be implemented earlier or later than they appear. They may be adopted in niche vehicle applications.

Luxury / SUV

500*

350-375

800

1,000

75

>100k

Performance

800*

650-800

1,200

1,500

85

<10k

Technology indicators for INVERTERS for light-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Light-duty vehicles	Urban mobility	Mass volume	Luxury / SUV	Performance		Light-duty vehicles
	Peak power (kW)	<100	250	350	600*		Peak power (kW)
	Continuous power (kW)	50	150	230	450-600		Continuous power (kW)
2025	Input voltage (max) (V)	400	400/800	800	800	2030	Input voltage (max) (V)
2023	Output current (A rms)	300	450/550	850	1,000	2000	Output current (A rms)
	Coolant inlet temp. (°C)	65	65	65	75		Coolant inlet temp. (°C)
	Production volume	>100k	>100k	>100k	<10k		Production volume

*Single inverter, multi-level; multi-phased system

	Light-duty vehicles	Urban mobility	Mass volume	Luxury / SUV	Performance
2040	Peak power (kW)	150	250	1,400	1,500
	Continuous power (kW)	90	150	800	1.0MW – 1.5MW
	Input voltage (max) (V)	400	400/800	1,200	1,500
	Output current (A rms)	350	450/550	1,000	1,500
	Coolant inlet temp. (°C)	65	75	85	Air cooled
	Production volume	>100k	>100k	>100k	<10k

		2025	2030	2040
	Volumetric density(kW/l)	60-80	120	200
All LDVs	Gravimetric density (kW/kg)	60-80	120	200
	WLTP** average efficiency	98%	98.5%	99%

Urban mobility

<150

75

400

200-350

65

>100k

Mass volume

250

150

800

550

65

>100k

Continuous power = 30 minutes *Single inverter, multi-level; multi-phased system **Worldwide Harmonised Light-Vehicle Test Procedure

Technology indicators for DC-DC CONVERTERS for light-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Light-duty vehicles	Urban Utility	Mass volume	Luxury / SUV	Performance
	Peak power (kW)	<2	>3	3.5	4
	Continuous power (kW)	<2	>3	3.5	2.5
2025	Input / output voltage (nominal) (V)	400	400	800	800
2023	Output / input voltage (nominal) (V)	12	12/48	12/48	12/48
	Coolant inlet temp. (°C)	65	65	65	75
	Production volume	>100k	>100k	>100k	<10k

	Light-duty vehicles	Urban Utility	Mass volume	Luxury / SUV	Performance
	Peak power (kW)	2	>3	4	5.2
2030	Continuous power (kW)	2	>3	4	5.2
	Input / output voltage (nominal) (V)	400	800	800	1,200
	Output / input voltage (nominal) (V)	12	12/48	48	48
	Coolant inlet temp. (°C)	65	65	75	85
	Production volume	>100k	>100k	>100k	<10k

Continuous power = 30 minutes

	Light-duty vehicles	Urban Utility	Mass volume	Luxury / SUV	Performance
2040	Peak power (kW)	3	>3	4	6.5
	Continuous power (kW)	3	>3	4	6.5
	Input / output voltage (nominal) (V)	400	400/800	800	1,500
	Output / input voltage (nominal) (V)	12	12/48	48	85
	Coolant inlet temp. (°C)	65	75	85	air cooled
	Production volume	>100k	>100k	>100k	<10k

		2025	2030	2040
	Volumetric density(kW/l)	3 – 4	3 – 5	3 – 6
All LDVs	Gravimetric density (kW/kg)	2 - 2.75	2.5-4	2.5-4.5
	WLTP** average efficiency	98%	98.50%	>99%

Continuous power = 30 minutes **Worldwide Harmonised Light-Vehicle Test Procedure

Luxury / SUV

22

22

800

75

>100k

Performance

22

22

1,200

85

<10k

Technology indicators for ON-BOARD CHARGERS for light-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Light-duty vehicles	Urban Utility	Mass volume	Luxury / SUV	Performance		Light-duty vehicles	Urban Utility	Mass volume	L
	Peak power (kW)	~3	~7	11	11		Peak power (kW)	~3	11	
	Continuous power (kW)	~3	~7	11	11		Continuous power (kW)	~3	11	
2025	Output / input voltage (nominal) (V)	400	400/800	800	800	2030	Output / input voltage (nominal) (V)	400	800	
	Coolant inlet temp. (°C)	65	65	65	75		Coolant inlet temp. (°C)	65	65	
	Production volume	>100k	>100k	>100k	<10k		Production volume	>100k	>100k	

	Light-duty vehicles	Urban Utility	Mass volume	Luxury / SUV	Performance
2040	Peak power (kW)	~3	22	22	22
	Continuous power (kW)	~3	22	22	22
	Output / input voltage (nominal) (V)	400	400/800	800	1,500
	Coolant inlet temp. (°C)	65	75	85	air cooled
	Production volume	>100k	>100k	>100k	<10k

		2025	2030	2040
	Volumetric density(kW/l)	2.5 – 3 n/a*	>4 n/a*	5 n/a*
All LDVs	Gravimetric density (kW/kg)	3 – 3.5 4.5*	4.5 12*	5.5 <20*
	WLTP** average efficiency	98%	98.50%	99%

*Applies to performance cars

** WLTP = Worldwide Harmonised Light-Vehicle Test Procedure

Technology indicators for INVERTERS for heavy-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

		Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t*		Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t*			Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t*
		Peak power (kW)	280-300	400*		Peak power (kW)	300	400*			Peak power (kW)	400	500*
		Continuous power (kW)	100-180	200*		Continuous power (kW)	180	250*			Continuous power (kW)	250	300*
	2025	System voltage (V)	800	800	2030	System voltage (V)	800	800		2040	System voltage (V)	1,000	1,000
4	2023	Charging voltage (V)	650	750	2000	Charging voltage (V)	750	1,200			Charging voltage (V)	1,200	1,800
		Output current (A rms)	750	820		Output current (A rms)	750	820			Output current (A rms)	820	1,000
		Coolant inlet temp. (°C)	65	65		Coolant inlet temp. (°C)	65	65			Coolant inlet temp. (°C)	75	75

*This vehicle typically has two motors. The output is per motor.

		2025	2030	2040
	Volumetric density(kW/l)	18.3	20.7	36.7
Heavy-duty 7.5 t - 26 t	Gravimetric density (kW/kg)	15	18.2	22
	WLTP** average efficiency	>97%	>98%	>98%

		2025	2030	2040
	Volumetric density(kW/l)	36.7	36.7	40.0
Heavy-duty 26 t - 44 t	Gravimetric density (kW/kg)	22.0	22.0	30.0
	WLTP** average efficiency	>97%	>98%	>98%

**Worldwide Harmonised Light-Vehicle Test Procedure

750 V*

10

10

1,200

65

Technology indicators for DC-DC CONVERTERS for heavy-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Output/input voltage (nom.)	28 V	48 V	750 V*			Output/input voltage (nom.)	28 V	48 V
	Peak power (kW)	3	>3	7			Peak power (kW)	3	5
2025	Continuous power (kW)	3	>3	7		2030	Continuous power (kW)	3	5
2023	Input / output voltage (nom.) (V)	800	800	800			Input / output voltage (nom.) (V)	800	1,200
	Coolant inlet temperature (°C)	65	65	65			Coolant inlet temperature (°C)	65	65

*This vehicle has two powerlines

	Output/input voltage (nom.)	28 V	48 V	750 V*
2040	Peak power (kW)	5	12	15
	Continuous power (kW)	5	12	15
	Input / output voltage (nom.) (V)	1,200	1,800	1,800
	Coolant inlet temperature (°C)	75	75	75

Technology indicators for ON-BOARD CHARGERS for heavy-duty vehicles

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t		Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t		Heavy-duty vehicle	HDV 7.5 t - 26 t	HDV 26 t – 44 t
	Peak power (kW)	22	n/a		Peak power (kW)	22	n/a		Peak power (kW)	22	n/a
2025	Continuous power (kW)	22	n/a	2030	Continuous power (kW)	22	n/a	2040	Continuous power (kW)	22	n/a
2020	Output / input voltage (nominal) (V)	850	n/a	2000	Output / input voltage (nominal) (V)	1,200	n/a	2040	Output / input voltage (nominal) (V)	1,200	n/a
	Coolant inlet temp. (°C)	65	n/a		Coolant inlet temp. (°C)	65	n/a		Coolant inlet temp. (°C)	75	n/a

61

Technology indicators for INVERTERS for off-highway (including non-road mobile machinery)

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Off-highway (including NRMM)	<5 t	8 t - 14 t	15 t - 44 t
2025	Peak power (kW)	<55	~83	300
	Continuous power (kW)	~35	~54	150
	System voltage (V)	<100	400	800
	Charging voltage (V)	<100	n/a	n/a
	Charging current (A rms)	300	n/a	n/a
	Coolant inlet temp. (°C)	Air cooled	65	65

<5 t = BEV	8 t - 14 t = MHV	15 t - 44 t = MHV

	Off-highway (including NRMM)	<5 t	8 t - 14 t	15 t - 44 t
2040	Peak power (kW)	55	100	500
	Continuous power (kW)	35	50	300
	System voltage (V)	100	400	800-1,000
	Charging voltage (V)	100	n/a	n/a
	Charging current (A rms)	300	n/a	n/a
	Coolant inlet temp. (°C)	Air cooled	75	75

	Off-highway (including NRMM)	<5 t	8 t - 14 t	15 t - 44 t
2030	Peak power (kW)	~55	~83	400
	Continuous power (kW)	~35	~54	250
	System voltage (V)	<100	400	800
	Charging voltage (V)	<100	n/a	n/a
	Charging current (A rms)	300	n/a	n/a
	Coolant inlet temp. (°C)	Air cooled	65	65

Technology indicators for DC-DC CONVERTERS for off-highway (including non-road mobile machinery)

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
	Peak power (kW)	<3	>3
	Continuous power (kW)	<3	>3
2025	Input / output voltage (nom.) (V)	400	400/800
	Output / input voltage (nom.) (V)	12	28
	Coolant inlet temp. (°C)	65	65

<5 t = BEV 8 t - 14 t = MHV 15 t - 44 t = MHV

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
2040	Peak power (kW)	3	4-5
	Continuous power (kW)	3	4-5
	Input / output voltage (nom.) (V)	400	400/ 800-1,000
	Output / input voltage (nom.) (V)	12	28
	Coolant inlet temp. (°C)	75	75

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
2030	Peak power (kW)	3	>3
	Continuous power (kW)	3	>3
	Input / output voltage (nom.) (V)	400	400/800
	Output / input voltage (nom.) (V)	12	28
	Coolant inlet temp. (°C)	65	65

Technology indicators for ON-BOARD CHARGERS for off-highway (including non-road mobile machinery)

Technology indicators that industry is likely to achieve in a mass-market competitive environment. All the performance metrics are ambitious and dependant on technology development but relate to the same technology.

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
2025	Peak power (kW)	3	n/a
	Continuous power (kW)	3	n/a
2025	Output / input voltage (nominal) (V)	230*	n/a
	Coolant inlet temp. (°C)	65	n/a

<5 t = BEV 8 t - 14 t = MHV 15 t - 44 t = MHVAC main 230 V

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
2040	Peak power (kW)	7	n/a
	Continuous power (kW)	7	n/a
	Output / input voltage (nominal) (V)	230*	n/a
	Coolant inlet temp. (°C)	75	n/a

	Off-highway (including NRMM)	<5 t	8 t - 14 t 15 t - 44 t
2030	Peak power (kW)	7	n/a
	Continuous power (kW)	7	n/a
	Output / input voltage (nominal) (V)	230*	n/a
	Coolant inlet temp. (°C)	65	n/a

Glossary

ACER	European Union Agency for the Cooperation of Energy Regulators	ML	Machine learning
AI	Artificial intelligence	MOSFET	Metal-oxide-semiconductor field-effect transistor
AlGaN	Aluminium gallium nitride	MPC	Model predictive control
AIN	Aluminium nitride	NEV	New energy vehicles
ANN	Artificial neural networks	NRMM	Non-road mobile machinery
AWD	Automatic wheel drive	OBC	On-board charger
BEV	Battery electric vehicle	OEE	Overall equipment effectiveness
CO ₂	Carbon dioxide	OEM	Original equipment manufacturer
Cu	Copper	PCB	Printed circuit board
E/E architecture	Electrical/electronic architecture	PCM	Phase changing materials
EU	European Union	PFAS	Per-and polyfluoroalkyl substance
EV	Electric vehicle	PHEV	Plug-in hybrid electric vehicle
FCEV	Fuel cell electric vehicle	R&D	Research and Development
FWD	Forward wheel drive	RTM	Resin transfer moulded
Ga ₂ O ₃	Gallium oxide	RWD	Rear wheel drive
GaN	Gallium nitride	Si	Silicon
GeO ₂	Germanium oxide	SiC	Silicon carbide
GVW	Gross vehicle weight	US	United States
HDV	Heavy-duty vehicle	V2G	Vehicle-to-grid
HEV	Hybrid electric vehicle	V2H	Vehicle-to-home
IC	Integrated circuit	WBG	Wide bandgap
IGBT	Insulated-gate bipolar transistor,	WLTP	World harmonised light-duty vehicles test procedure
LCA	Life cycle assessment	xEV	Any type of electric vehicle (BEV, FCEV, HEV, NEV, PHEV)
LDV	Light-duty vehicle	ZEV	Zero-emission vehicle

Find all the roadmaps at

www.apcuk.co.uk/technology-roadmaps

Established in 2013, the Advanced Propulsion Centre UK (APC), with the backing of the UK Government's Department for Business and Trade (DBT), has facilitated funding for 304 low-carbon and zero-emission projects involving 538 partners. Working with companies of all sizes, this funding is estimated to have helped to create or safeguard over 59,000 jobs in the UK. The technologies and products that result from these projects are projected to save over 425 million tonnes of CO₂.

The APC would like to acknowledge the extensive support provided by industry and academia in developing and publishing the roadmaps.

